COMPUTATIONAL GEOMETRY

An Introduction Through Randomized Incremental Algorithms

Mark de Berg (TU Eindhoven)

Algorithms for Spatial Data

Geometry is everywhere ...

- geographic information systems
- computer-aided design and manufacturing
- virtual reality
- robotics
- computational biology

- sensor networks
- databases
- and more...

Computational Geometry

Computational Geometry
area within algorithms research dealing with spatial data

- aim for provably correct solutions (no heuristics)
- theoretical analysis of running time, memory usage: $O(\ldots)$

Computational Geometry

example problem: line-segment intersection

Compute all k intersections in a set S of n line segments.

Computational Geometry

example problem: line-segment intersection

Compute all k intersections in a set S of n line segments.

1. for every pair of segments in S
2. do compute (possible) intersection

- running time $O\left(n^{2}\right)$
- can we do better if k is small? yes: $O(n \log n)$

Computational Geometry

example problem: line-segment intersection

Compute all k intersections in a set S of n line segments.

1. for every pair of segments in S
2. do compute (possible) intersection

- running time $O\left(n^{2}\right)$
- can we do better if k is small? yes: $O(n \log n)$

Computational geometry

- focus on scale-up behavior
- basic operations are assumed available (compute intersection of two lines, distance between two points, etc.)

Computational Geometry: Tools of the Trade

Algorithmic design techniques and tools

- plane sweep
- geometric divide-and-conquer
- randomized incremental construction
- parametric search
- (multi-level) geometric data structures

Geometric structures and concepts

- Voronoi diagrams and Delaunay triangulations
- arrangements
- cuttings, simplicial partitions, polynomial partitions
- corsets

Course Overview

Course Overview

Warm-up Exercise

Warm-up Exercise

Analyze worst-case and the expected running time of the following algorithm

Paranoid Max (A)
\triangleright computes maximum in an array $A[0 . . n-1]$
1: Randomly permutate the elements in the array A
2: $\max \leftarrow A[0]$
3: for $i \leftarrow 1$ to $n-1$ do
4: \quad if $A[i]>\max$ then
5: $\quad \max \leftarrow A[i]$
6: \quad to be on the safe side, check if $A[i]$ is
7: \quad indeed the largest element in $A[0 . . i]$
8: return max

Warm-up Exercise

Analyze worst-case and the expected running time of the following algorithm

Paranoid Max (A)
\triangleright computes maximum in an array $A[0 . . n-1]$
1: Randomly permutate the elements in the array A
2: $\max \leftarrow A[0]$
3: for $i \leftarrow 1$ to $n-1$ do
4: \quad if $A[i]>\max$ then
5: $\quad \max \leftarrow A[i]$
6: \quad for $j \leftarrow 0$ to $i-1$ do
7: \quad if $A[j]>\max$ then error
8: return max

Warm-up Exercise

Analyze worst-case and the expected running time of the following algorithm
Paranoid Max (A)
\triangleright computes maximum in an array $A[0 . . n-1]$
1: Randomly permutate the elements in the array A
2: $\max \leftarrow A[0]$
3: for $i \leftarrow 1$ to $n-1$ do
4: if $A[i]>\max$ then
5: $\quad \max \leftarrow A[i]$
6: \quad for $j \leftarrow 0$ to $i-1$ do if $A[j]>\max$ then error
8: return max

- generates permutation uniformly at random
- assume this can be done in $O(n)$ time

Worst-case analysis
running time $=O(n)+\sum_{i=1}^{n-1}$ (worst-case time for i-th iteration)

$$
\begin{aligned}
& =O(n)+\sum_{i=1}^{n-1} O(i) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Analysis of expected running time

$$
\begin{aligned}
\mathrm{E}[\text { running time }] & =\mathrm{E}\left[O(n)+\sum_{i=1}^{n-1} \text { time for } i \text {-th iteration }\right] \\
& =O(n)+\sum_{i=1}^{n-1} \mathrm{E}[\text { time for } i \text {-th iteration }]
\end{aligned}
$$

Analysis of expected running time

$$
\begin{aligned}
\mathrm{E}[\text { running time }] & =\mathrm{E}\left[O(n)+\sum_{i=1}^{n-1} \text { time for } i \text {-th iteration }\right] \\
& =O(n)+\sum_{i=1}^{n-1} \mathrm{E}[\text { time for } i \text {-th iteration }]
\end{aligned}
$$

E [time for i-th iteration] $=\operatorname{Pr}[$ max changes in i-th iteration] $\cdot O(i)$
$+\operatorname{Pr}[$ max does not change] $\cdot O(1)$

Analysis of expected running time

$$
\begin{aligned}
\mathrm{E}[\text { running time }] & =\mathrm{E}\left[O(n)+\sum_{i=1}^{n-1} \text { time for } i \text {-th iteration }\right] \\
& =O(n)+\sum_{i=1}^{n-1} \mathrm{E}[\text { time for } i \text {-th iteration }]
\end{aligned}
$$

E [time for i-th iteration] $=\operatorname{Pr}[$ max changes in i-th iteration] $\cdot O(i)$
$+\operatorname{Pr}[$ max does not change $] \cdot O(1)$

backwards analysis

max changes when adding
$A[i]$ to $\{A[0], \ldots, A[i-1]\}$
max changes when removing $A[i]$ from $\{A[0], \ldots, A[i]\}$

Analysis of expected running time

$$
\begin{aligned}
\mathrm{E}[\text { running time }] & =\mathrm{E}\left[O(n)+\sum_{i=1}^{n-1} \text { time for } i \text {-th iteration }\right] \\
& =O(n)+\sum_{i=1}^{n-1} \mathrm{E}[\text { time for } i \text {-th iteration }]
\end{aligned}
$$

$$
\leqslant 1 / i
$$

$\mathrm{E}[$ time for i-th iteration $]=\operatorname{Pr}[$ max changes in i-th iteration $] \cdot O(i)$
$+\operatorname{Pr}[$ max does not change $] \cdot O(1)$

backwards analysis

max changes when adding
$A[i]$ to $\{A[0], \ldots, A[i-1]\}$
max changes when removing $A[i]$ from $\{A[0], \ldots, A[i]\}$

Analysis of expected running time

$$
\begin{aligned}
\mathrm{E}[\text { running time }] & =\mathrm{E}\left[O(n)+\sum_{i=1}^{n-1} \text { time for } i \text {-th iteration }\right] \\
& =O(n)+\sum_{i=1}^{n-1} \mathrm{E}[\text { time for } i \text {-th iteration }] \\
& =O(n)
\end{aligned}
$$

$$
\leqslant 1 / i
$$

$\mathrm{E}[$ time for i-th iteration $]=\operatorname{Pr}[$ max changes in i-th iteration $] \cdot O(i)$
$+\operatorname{Pr}[$ max does not change $] \cdot O(1)$

backwards analysis

max changes when adding
$A[i]$ to $\{A[0], \ldots, A[i-1]\}$
max changes when removing $A[i]$ from $\{A[0], \ldots, A[i]\}$

Analysis of expected running time
with respect to random choices of algorithm, no assumptions on input distribution

$$
\begin{aligned}
\mathrm{E}[\text { running time }] & =\mathrm{E}\left[O(n)+\sum_{i=1}^{n-1} \text { time for } i \text {-th iteration }\right] \\
& =O(n)+\sum_{i=1}^{n-1} \mathrm{E}[\text { time for } i \text {-th iteration }] \\
& =O(n)
\end{aligned}
$$

$$
\leqslant 1 / i
$$

$\mathrm{E}[$ time for i-th iteration] $=\operatorname{Pr}[$ max changes in i-th iteration] $\cdot O(i)$
$+\operatorname{Pr}[$ max does not change $] \cdot O(1)$

backwards analysis

max changes when adding
$A[i]$ to $\{A[0], \ldots, A[i-1]\}$
max changes when removing $A[i]$ from $\{A[0], \ldots, A[i]\}$

Sorting using (Randomized) Incremental Construction

Sorting using (Randomized) Incremental Construction

A geometric view of sorting

Input: A set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ of n points in \mathbb{R}^{1}
Output: Sorted set \mathcal{I} of intervals into which S partitions \mathbb{R}^{1}

Sorting using (Randomized) Incremental Construction

A geometric view of sorting

Input: A set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ of n points in \mathbb{R}^{1}
Output: Sorted set \mathcal{I} of intervals into which S partitions \mathbb{R}^{1}

Incremental construction:
Add points one by one, and update \mathcal{I} after each addition

Sorting using (Randomized) Incremental Construction

```
IC-Sort \((S)\)
    1: \(\mathcal{I} \leftarrow\{[-\infty,+\infty]\}\)
    2: for \(j \leftarrow 1\) to \(n\) do
```

 3:
 Find interval $I=\left[x, x^{\prime}\right]$ in \mathcal{I} that contains x_{j}
Remove I from \mathcal{I} and insert $\left[x, x_{j}\right]$ and $\left[x_{j}, x^{\prime}\right]$ into \mathcal{I}
4: return \mathcal{I}

Sorting using (Randomized) Incremental Construction

```
IC-Sort(S)
    1: \mathcal{I}\leftarrow{[-\infty,+\infty]}
    2: for }j\leftarrow1\mathrm{ to }n\mathrm{ do
```

3:

Find interval $I=\left[x, x^{\prime}\right]$ in \mathcal{I} that contains x_{j}
Remove I from \mathcal{I} and insert $\left[x, x_{j}\right]$ and $\left[x_{j}, x^{\prime}\right]$ into \mathcal{I}
4: return \mathcal{I}

- for each point x_{i} maintain a pointer to the interval $I \in \mathcal{I}$ that contains x_{i}
- for each interval $I \in \mathcal{I}$ maintain a conflict list $K(I)$ that stores all points contained in I

Sorting using (Randomized) Incremental Construction

```
IC-Sort(S)
    1: \mathcal{I}\leftarrow{[-\infty,+\infty]}
    2: for }j\leftarrow1\mathrm{ to }n\mathrm{ do
```

3:
4: return \mathcal{I}

- for each point x_{i} maintain a pointer to the interval $I \in \mathcal{I}$ that contains x_{i}
- for each interval $I \in \mathcal{I}$ maintain a conflict list $K(I)$ that stores all points contained in I

Sorting using (Randomized) Incremental Construction

```
IC-Sort(S)
    1: \mathcal{I}\leftarrow{[-\infty,+\infty]}
    2: for }j\leftarrow1\mathrm{ to }n\mathrm{ do
    3: (i) Use pointer from }\mp@subsup{x}{i}{}\mathrm{ to find interval I containing }\mp@subsup{x}{i}{
    (ii) Split I at }\mp@subsup{x}{i}{}\mathrm{ into intervals }\mp@subsup{I}{}{\prime}\mathrm{ and }\mp@subsup{I}{}{\prime\prime}\mathrm{ , and replace }I\mathrm{ in }\mathcal{I}\mathrm{ by }\mp@subsup{I}{}{\prime},\mp@subsup{I}{}{\prime\prime
    (iii) Construct K(I') and K(I'\prime) from K(I)
    (iv) Update pointers of points in K(I') and K(I')
```

4: return \mathcal{I}

- for each point x_{i} maintain a pointer to the interval $I \in \mathcal{I}$ that contains x_{i}
- for each interval $I \in \mathcal{I}$ maintain a conflict list $K(I)$ that stores all points contained in I

Sorting using (Randomized) Incremental Construction

IC-Sort (S)

1: $\mathcal{I} \leftarrow\{[-\infty,+\infty]\}$
2: for $j \leftarrow 1$ to n do
3: (i) Use pointer from x_{i} to find interval I containing x_{i}
(ii) Split I at x_{i} into intervals I^{\prime} and $I^{\prime \prime}$, and replace I in \mathcal{I} by $I^{\prime}, I^{\prime \prime}$
(iii) Construct $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$ from $K(I)$
(iv) Update pointers of points in $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$

4: return \mathcal{I}

- for each point x_{i} maintain a pointer to the interval $I \in \mathcal{I}$ that contains x_{i}
- for each interval $I \in \mathcal{I}$ maintain a conflict list $K(I)$ that stores all points contained in I

Sorting using (Randomized) Incremental Construction

```
IC-Sort \((S)\)
    1: Set \(I \leftarrow[-\infty, \infty]\) and \(\mathcal{I} \leftarrow\{I\}\), give each \(x_{j}\) a pointer to \(I\), set \(K(I) \leftarrow S\)
2: for \(j \leftarrow 1\) to \(n\) do
3: \(\quad\) (i) Use pointer from \(x_{i}\) to find interval \(I\) containing \(x_{i}\)
(ii) Split \(I\) at \(x_{i}\) into intervals \(I^{\prime}\) and \(I^{\prime \prime}\), and replace \(I\) in \(\mathcal{I}\) by \(I^{\prime}, I^{\prime \prime}\)
(iii) Construct \(K\left(I^{\prime}\right)\) and \(K\left(I^{\prime \prime}\right)\) from \(K(I)\)
(iv) Update pointers of points in \(K\left(I^{\prime}\right)\) and \(K\left(I^{\prime \prime}\right)\)
4: return \(\mathcal{I}\)
```

- for each point x_{i} maintain a pointer to the interval $I \in \mathcal{I}$ that contains x_{i}
- for each interval $I \in \mathcal{I}$ maintain a conflict list $K(I)$ that stores all points contained in I

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: Set $I \leftarrow[-\infty, \infty]$ and $\mathcal{I} \leftarrow\{I\}$, give each x_{j} a pointer to I, set $\mathcal{L}(I) \leftarrow S$
2: for $j \leftarrow 1$ to n do
3: \quad (i) Use pointer from x_{i} to find interval I containing x_{i}
(ii) Split I at x_{i} into intervals I^{\prime} and $I^{\prime \prime}$, and replace I in \mathcal{I} by $I^{\prime}, I^{\prime \prime}$
(iii) Construct $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$ from $K(I)$
(iv) Update pointers of points in $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$

4: return \mathcal{I}

Sorting using (Randomized) Incremental Construction

IC-Sort (S)
1: Set $I \leftarrow[-\infty, \infty]$ and $\mathcal{I} \leftarrow\{I\}$, give each x_{j} a pointer to I, set $\mathcal{L}(I) \leftarrow S$
2: for $j \leftarrow 1$ to n do
3: \quad (i) Use pointer from x_{i} to find interval I containing x_{i}
(ii) Split I at x_{i} into intervals I^{\prime} and $I^{\prime \prime}$, and replace I in \mathcal{I} by $I^{\prime}, I^{\prime \prime}$
(iii) Construct $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$ from $K(I)$
(iv) Update pointers of points in $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$

4: return \mathcal{I}

Running time: $O\left(\sum_{j=1}^{n}(\right.$ size of conflict list split in j-th iteration $\left.)\right)$

Sorting using (Randomized) Incremental Construction

IC-Sort (S)
1: Set $I \leftarrow[-\infty, \infty]$ and $\mathcal{I} \leftarrow\{I\}$, give each x_{j} a pointer to I, set $\mathcal{L}(I) \leftarrow S$
2: for $j \leftarrow 1$ to n do
3: \quad (i) Use pointer from x_{i} to find interval I containing x_{i}
(ii) Split I at x_{i} into intervals I^{\prime} and $I^{\prime \prime}$, and replace I in \mathcal{I} by $I^{\prime}, I^{\prime \prime}$
(iii) Construct $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$ from $K(I)$
(iv) Update pointers of points in $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$

4: return \mathcal{I}

Running time: $O\left(\sum_{j=1}^{n}\right.$ (size of conflict list split in j-th iteration $)$)

- worst case: in each step j, we split a conflict list of size $n-j+1$ into lists of size 0 and $n-j$

Sorting using (Randomized) Incremental Construction

IC-Sort (S)
1: Set $I \leftarrow[-\infty, \infty]$ and $\mathcal{I} \leftarrow\{I\}$, give each x_{j} a pointer to I, set $\mathcal{L}(I) \leftarrow S$
2: for $j \leftarrow 1$ to n do
3: (i) Use pointer from x_{i} to find interval I containing x_{i}
(ii) Split I at x_{i} into intervals I^{\prime} and $I^{\prime \prime}$, and replace I in \mathcal{I} by $I^{\prime}, I^{\prime \prime}$
(iii) Construct $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$ from $K(I)$
(iv) Update pointers of points in $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$

4: return \mathcal{I}

Running time: $O\left(\sum_{j=1}^{n}\right.$ (size of conflict list split in j-th iteration) $)$

- worst case: in each step j, we split a conflict list of size $n-j+1$ into lists of size 0 and $n-j$
running time is $O\left(\sum_{j=1}^{n}(n-j+1)\right)=O\left(n^{2}\right)$

Sorting using (Randomized) Incremental Construction

IC-Sort (S)
1: Set $I \leftarrow[-\infty, \infty]$ and $\mathcal{I} \leftarrow\{I\}$, give each x_{j} a pointer to I, set $\mathcal{L}(I) \leftarrow S$
2: for $j \leftarrow 1$ to n do
3: (i) Use pointer from x_{i} to find interval I containing x_{i}
(ii) Split I at x_{i} into intervals I^{\prime} and $I^{\prime \prime}$, and replace I in \mathcal{I} by $I^{\prime}, I^{\prime \prime}$
(iii) Construct $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$ from $K(I)$
(iv) Update pointers of points in $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$

4: return \mathcal{I}

Running time: $O\left(\sum_{j=1}^{n}(\right.$ size of conflict list split in j-th iteration $\left.)\right)$

Sorting using (Randomized) Incremental Construction

$\operatorname{IC-Sort}(S) \quad$ Put points x_{i} in random order
1: Set $I \leftarrow[-\infty, \infty]$ and $\mathcal{I} \leftarrow\{I\}$, give each x_{j} a pointer to I, set $\mathcal{L}(I) \leftarrow S$
2: for $j \leftarrow 1$ to n do
3: (i) Use pointer from x_{i} to find interval I containing x_{i}
(ii) Split I at x_{i} into intervals I^{\prime} and $I^{\prime \prime}$, and replace I in \mathcal{I} by $I^{\prime}, I^{\prime \prime}$
(iii) Construct $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$ from $K(I)$
(iv) Update pointers of points in $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$

4: return \mathcal{I}

Running time: $O\left(\sum_{j=1}^{n}(\right.$ size of conflict list split in j-th iteration $\left.)\right)$

Sorting using (Randomized) Incremental Construction

$\operatorname{IC-Sort}(S) \quad$ Put points x_{i} in random order
1: Set $I \leftarrow[-\infty, \infty]$ and $\mathcal{I} \leftarrow\{I\}$, give each x_{j} a pointer to I, set $\mathcal{L}(I) \leftarrow S$
2: for $j \leftarrow 1$ to n do
3: (i) Use pointer from x_{i} to find interval I containing x_{i}
(ii) Split I at x_{i} into intervals I^{\prime} and $I^{\prime \prime}$, and replace I in \mathcal{I} by $I^{\prime}, I^{\prime \prime}$
(iii) Construct $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$ from $K(I)$
(iv) Update pointers of points in $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$

4: return \mathcal{I}

Running time: $O\left(\sum_{j=1}^{n}(\right.$ size of conflict list split in j-th iteration $\left.)\right)$

- expected:

Sorting using (Randomized) Incremental Construction

IC-Sort (S)
Put points x_{i} in random order
1: Set $I \leftarrow[-\infty, \infty]$ and $\mathcal{I} \leftarrow\{I\}$, give each x_{j} a pointer to I, set $\mathcal{L}(I) \leftarrow S$
2: for $j \leftarrow 1$ to n do
3: \quad (i) Use pointer from x_{i} to find interval I containing x_{i}
(ii) Split I at x_{i} into intervals I^{\prime} and $I^{\prime \prime}$, and replace I in \mathcal{I} by $I^{\prime}, I^{\prime \prime}$
(iii) Construct $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$ from $K(I)$
(iv) Update pointers of points in $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$

4: return \mathcal{I}

Running time: $O\left(\sum_{j=1}^{n}(\right.$ size of conflict list split in j-th iteration $\left.)\right)$

- expected:
at most
$1+(n-j+1) \cdot \frac{2}{j}$

apply backwards analysis

Sorting using (Randomized) Incremental Construction

IC-Sort (S)
Put points x_{i} in random order
1: Set $I \leftarrow[-\infty, \infty]$ and $\mathcal{I} \leftarrow\{I\}$, give each x_{j} a pointer to I, set $\mathcal{L}(I) \leftarrow S$
2: for $j \leftarrow 1$ to n do
3: \quad (i) Use pointer from x_{i} to find interval I containing x_{i}
(ii) Split I at x_{i} into intervals I^{\prime} and $I^{\prime \prime}$, and replace I in \mathcal{I} by $I^{\prime}, I^{\prime \prime}$
(iii) Construct $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$ from $K(I)$
(iv) Update pointers of points in $K\left(I^{\prime}\right)$ and $K\left(I^{\prime \prime}\right)$

4: return \mathcal{I}

$$
\sum_{j=1}^{n}\left(1+\frac{2(n-j+1)}{j}\right)=O\left(n+n \sum_{j=1}^{n} \frac{1}{j}\right)=O(n \log n)
$$

Running time: $O\left(\sum_{j=1}^{n}\right.$ (size of conflict list split in j-th iteration $)$)

- expected:
at most
$1+(n-j+1) \cdot \frac{2}{j}$

apply backwards analysis

Randomized Incremental Construction: The Framework

Randomized Incremental Construction: The Framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$ $K(\Delta) \cap D(\Delta)=\emptyset$ for all Δ

Randomized Incremental Construction: The Framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$

$$
K(\Delta) \cap D(\Delta)=\emptyset \text { for all } \Delta
$$

For $S^{\prime} \subseteq S$, define $\mathcal{C}_{\text {act }}\left(S^{\prime}\right)=\left\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S^{\prime}\right.$ and $\left.K(\Delta) \cap S^{\prime}=\emptyset\right\}$ to be the set of configurations that are active with respect to S^{\prime}

Goal: compute set $\mathcal{C}_{\text {act }}(S)$ of active configurations with respect to S

Randomized Incremental Construction: The Framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$

$$
K(\Delta) \cap D(\Delta)=\emptyset \text { for all } \Delta
$$

For $S^{\prime} \subseteq S$, define $\mathcal{C}_{\text {act }}\left(S^{\prime}\right)=\left\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S^{\prime}\right.$ and $\left.K(\Delta) \cap S^{\prime}=\emptyset\right\}$ to be the set of configurations that are active with respect to S^{\prime}

Goal: compute set $\mathcal{C}_{\text {act }}(S)$ of active configurations with respect to S

Example: sorting

$$
\mathcal{C}(S):=\left\{\left[x_{i}, x_{j}\right]: x_{i}, x_{j} \in S \cup\{-\infty,+\infty\} \text { and } x_{i}<x_{j}\right\}
$$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

To find configurations that become inactive:

- for each x_{j} maintain a list of all configurations $\Delta \in \mathcal{C}_{\text {act }}$ with $x_{j} \in K(\Delta)$
- for each configuration $\Delta \in \mathcal{C}_{\text {act }}$ maintain its conflict list $K(\Delta)$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$
Theorem. Let $S_{j}:=\left\{x_{1}, \ldots, x_{j}\right\}$. Then
(i) $\mathrm{E}\left[\left\lvert\, \mathcal{C}_{\text {act }}\left(S_{j}\right) \backslash \mathcal{C}_{\text {act }}\left(S_{j-1)} \mid\right]=O\left(\frac{\mathrm{E}\left[\text { size of } \mathcal{C}_{\text {act }}\left(S_{j}\right)\right]}{j}\right)\right.\right.$
(ii) The total size of the conflict lists of the active configurations appearing over the course of the algorithm is $O\left(\sum_{j=1}^{n} \frac{n}{j^{2}} \cdot \mathrm{E}\left[\left|\mathcal{C}_{\text {act }}\left(S_{j}\right)\right|\right]\right)$

Exercises

1. Give an algorithm that computes (all edges of) the convex hull of a set S of n points in the plane that runs in $O(n \log n)$ expected time.

2. Give an algorithm that computes all k intersections in a set S of n segments in the plane that runs in $O(n \log n+k)$ expected time.

Exercises

1. Give an algorithm that computes (all edges of) the convex hull of a set S of n points in the plane that runs in $O(n \log n)$ expected time.

2. Give an algorithm that computes all k intersections in a set S of n segments in the plane that runs in $O(n \log n+k)$ expected time.

The framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing Convex Hulls with RIC

The framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing Convex Hulls with RIC

The framework

- $S=$ set of n input objects the points
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing Convex Hulls with RIC

The framework

- $S=$ set of n input objects the points
- $\mathcal{C}(S)=$ set of configurations defined by S directed segments
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing Convex Hulls with RIC

The framework

- $S=$ set of n input objects the points
- $\mathcal{C}(S)=$ set of configurations defined by S directed segments
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ endpoints size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing Convex Hulls with RIC

The framework

- $S=$ set of n input objects the points
- $\mathcal{C}(S)=$ set of configurations defined by S directed segments
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ endpoints size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$ points left of (extended) segment
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing Convex Hulls with RIC

The framework

- $S=$ set of n input objects the points
- $\mathcal{C}(S)=$ set of configurations defined by S directed segments
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ endpoints size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$ points left of (extended) segment
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow$ \{active configurations with respect to $\boldsymbol{x}^{\text {a }}$ first three points
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow$ \{active configurations with respect to $\}$ first three points
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow$ \{active configurations with respect to $\}$ first three points
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow$ \{active configurations with respect to first three points
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow$ \{active configurations with respect to $\}$ first three points
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow$ \{active configurations with respect to $\}$ first three points
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow$ \{active configurations with respect to first three points
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

- in conflict with two configs

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow$ \{active configurations with respect to $\}$ first three points
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

- in conflict with two configs

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow$ \{active configurations with respect to first three points
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow$ \{active configurations with respect to first three points
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

- in conflict with two configs
- two new configs appear

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow$ \{active configurations with respect to first three points
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

○

- in conflict with two configs
- two new configs appear

Randomized Incremental Construction: The Algorithm

RIC-Algorithm (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S
2: $\mathcal{C}_{\text {act }} \leftarrow$ \{active configurations with respect to first three points
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove configurations from $\mathcal{C}_{\text {act }}$ that are in conflict with x_{j}
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

\circ

- in conflict with two configs
- two new configs appear conflict lists are subset of union of old conflict lists

Randomized Incremental Construction: The Algorithm

Theorem. Let $S_{j}:=\left\{x_{1}, \ldots, x_{j}\right\}$. Then
(i) $\mathrm{E}\left[\left\lvert\, \mathcal{C}_{\text {act }}\left(S_{j}\right) \backslash \mathcal{C}_{\text {act }}\left(S_{j-1)} \mid\right]=O\left(\frac{\mathrm{E}\left[\text { size of } \mathcal{C}_{\text {act }}\left(S_{j}\right)\right]}{j}\right)\right.\right.$
(ii) The total size of the conflict lists of the active configurations appearing over the course of the algorithm is $O\left(\sum_{j=1}^{n} \frac{n}{j^{2}} \cdot \mathrm{E}\left[\left|\mathcal{C}_{\text {act }}\left(S_{j}\right)\right|\right]\right)$

Randomized Incremental Construction: The Algorithm

Theorem. Let $S_{j}:=\left\{x_{1}, \ldots, x_{j}\right\}$. Then
(i) $\mathrm{E}\left[\left\lvert\, \mathcal{C}_{\text {act }}\left(S_{j}\right) \backslash \mathcal{C}_{\text {act }}\left(S_{j-1)} \mid\right]=O\left(\frac{\mathrm{E}\left[\text { size of } \mathcal{C}_{\text {act }}\left(S_{j}\right)\right]}{j}\right)\right.\right.$
(ii) The total size of the conflict lists of the active configurations appearing over the course of the algorithm is $O\left(\sum_{j=1}^{n} \frac{n}{j^{2}} \cdot \mathrm{E}\left[\left|\mathcal{C}_{\text {act }}\left(S_{j}\right)\right|\right]\right)$

- $\left|\mathcal{C}_{\text {act }}\left(S_{j}\right)\right| \leqslant j$
- total running time is linear in total size of all (dis)appearing conflict lists

Randomized Incremental Construction: The Algorithm

Theorem. Let $S_{j}:=\left\{x_{1}, \ldots, x_{j}\right\}$. Then
(i) $\mathrm{E}\left[\left\lvert\, \mathcal{C}_{\text {act }}\left(S_{j}\right) \backslash \mathcal{C}_{\text {act }}\left(S_{j-1)} \mid\right]=O\left(\frac{\mathrm{E}\left[\text { size of } \mathcal{C}_{\text {act }}\left(S_{j}\right)\right]}{j}\right)\right.\right.$
(ii) The total size of the conflict lists of the active configurations appearing over the course of the algorithm is $O\left(\sum_{j=1}^{n} \frac{n}{j^{2}} \cdot \mathrm{E}\left[\left|\mathcal{C}_{\text {act }}\left(S_{j}\right)\right|\right]\right)$

- $\left|\mathcal{C}_{\text {act }}\left(S_{j}\right)\right| \leqslant j$
- total running time is linear in total size of all (dis)appearing conflict lists
convex-hull algorithm runs in $O(n \log n)$ time

Line-Segment Intersection with RIC

Line-Segment Intersection with RIC

The framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Line-Segment Intersection with RIC

Configurations?

The framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Line-Segment Intersection with RIC

Configurations?

- intersection points does not work (find new configurations?)

The framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Line-Segment Intersection with RIC

Configurations?

- intersection points does not work (find new configurations?)
- "subsegments" of segments does not work (initialization?)

The framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Line-Segment Intersection with RIC

Configurations?

- intersection points does not work (find new configurations?)
- "subsegments" of segments does not work (initialization?)
- construct vertical decomposition

The framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Configurations?

- intersection points does not work (find new configurations?)
- "subsegments" of segments does not work (initialization?)
- construct vertical decomposition

The framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size should be bounded by a fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Course Overview

Course Overview

Terrain Reconstruction

Image: www.aurorasolar.com

Principia Philosiphiae (Descartes, 1664)

Principia Philosiphiae (Descartes, 1664)

Principia Philosiphiae (Descartes, 1664)

Georgy Voronoy (1868-1908)

Terrain Reconstruction from Elevation Data

Back to terrain reconstruction...

Terrain Reconstruction from Elevation Data

Terrain Reconstruction from Elevation Data

Terrain Reconstruction from Elevation Data

Idea: use elevation of nearest sample point

Voronoi diagram

Not good: surface not continuous

Terrain Reconstruction from Elevation Data

Better idea: determine elevation using interpolation

Terrain Reconstruction from Elevation Data

Better idea: determine elevation using interpolation

Terrain Reconstruction from Elevation Data

Better idea: determine elevation using interpolation

Terrain Reconstruction from Elevation Data

Better idea: determine elevation using interpolation
gives continuous surface

Which triangulation should we use?

Which triangulation should we use?

long and thin triangles are bad \Longrightarrow try to avoid small angles

Algorithmic problem: How can we quickly compute a triangulation that maximizes the minimum angle?

Terrain Reconstruction from Elevation Data

Terrain Reconstruction from Elevation Data

Voronoi diagram connect points whose cells are neighbors

Terrain Reconstruction from Elevation Data

Voronoi diagram
connect points whose cells are neighbors

Delaunay triangulation: triangulation that maximizes the minimum angle!

Boris Delaunay (1890-1980)

Computing the Delaunay Triangulation

Computing the Delaunay Triangulation

$\Delta(p, q, r)$ is in Delaunay triangulation \Longleftrightarrow
Circle (p, q, r) contains no other point

Computing the Delaunay Triangulation

$\Delta(p, q, r)$ is in Delaunay triangulation \Longleftrightarrow
Circle (p, q, r) contains no other point

Computing the Delaunay Triangulation

$\Delta(p, q, r)$ is in Delaunay triangulation \Longleftrightarrow
Circle (p, q, r) contains no other point

Computing the Delaunay Triangulation

$\Delta(p, q, r)$ is in Delaunay triangulation \Longleftrightarrow
Circle (p, q, r) contains no other point

Computing the Delaunay Triangulation

$\Delta(p, q, r)$ is in Delaunay triangulation \Longleftrightarrow
Circle (p, q, r) contains no other point

Computing the Delaunay Triangulation

$\Delta(p, q, r)$ is in Delaunay triangulation \Longleftrightarrow
Circle (p, q, r) contains no other point

Delaunay-Algorithm (S)
1: $\mathcal{T} \leftarrow \emptyset$
2: for every triple of points p, q, r from S do
3: \quad if all other points from S lie outside $\operatorname{Circle}(p, q, r)$ then
4: \quad Add $\Delta(p, q, r)$ to \mathcal{T}
5: return \mathcal{T}

Computing the Delaunay Triangulation

$\Delta(p, q, r)$ is in Delaunay triangulation \Longleftrightarrow
Circle (p, q, r) contains no other point

Delaunay-Algorithm (S)
1: $\mathcal{T} \leftarrow \emptyset$
2: for every triple of points p, q, r from S do
3: \quad if all other points from S lie outside $\operatorname{Circle}(p, q, r)$ then
4: \quad Add $\Delta(p, q, r)$ to \mathcal{T}
5: return \mathcal{T}
Running time:

Computing the Delaunay Triangulation

$\Delta(p, q, r)$ is in Delaunay triangulation \Longleftrightarrow
Circle (p, q, r) contains no other point

Delaunay-Algorithm (S)
1: $\mathcal{T} \leftarrow \emptyset$
2: for every triple of points p, q, r from S do
3: \quad if all other points from S lie outside $\operatorname{Circle}(p, q, r)$ then
4: \quad Add $\Delta(p, q, r)$ to \mathcal{T}
5: return \mathcal{T} Running time: $O\left(n^{4}\right)$

Computing the Delaunay Triangulation by RIC

Exercise

Apply the RIC framework to develop a randomized algorithm to compute the Delaunay triangulation, and analyze its running time.

Fact: The number of triangles in the Delaunay triangulation of a set S of n points in the plane is at most $2 n-5$.

Computing the Delaunay Triangulation by RIC

Exercise

Apply the RIC framework to develop a randomized algorithm to compute the Delaunay triangulation, and analyze its running time.

Fact: The number of triangles in the Delaunay triangulation of a set S of n points in the plane is at most $2 n-5$.

The framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size bounded by fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=$ $\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing the Delaunay Triangulation by RIC

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size bounded by fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=$ $\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing the Delaunay Triangulation by RIC

- $S=$ set of n input points
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size bounded by fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=$ $\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing the Delaunay Triangulation by RIC

- $S=$ set of n input points
- $\mathcal{C}(S)=$ all possible triangles defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size bounded by fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=$ $\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing the Delaunay Triangulation by RIC

- $S=$ set of n input points
- $\mathcal{C}(S)=$ all possible triangles defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size bounded by fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=$ $\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing the Delaunay Triangulation by RIC

- $S=$ set of n input points
- $\mathcal{C}(S)=$ all possible triangles defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size bounded by fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$ all points contained in circumcircle of Δ
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=$ $\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)
1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: \quad Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active gonfigurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations
8: return $\mathcal{C}_{\text {act }}$

Computing the Delaunay Triangulation by RIC

RIC-Delaunay (S)

1: Compute a random permutation x_{1}, \ldots, x_{n} of the objects in S.
2: $\mathcal{C}_{\text {act }} \leftarrow\{$ active configurations with respect to $\emptyset\}$
3: Intitialize conflict lists of configurations $\Delta \in \mathcal{C}_{\text {act }}$
4: for $j \leftarrow 1$ to n do
5: Remove all configurations from $\mathcal{C}_{\text {act }}$ that become inactive
6: \quad Determine new active configurations and insert them into $\mathcal{C}_{\text {act }}$
7: Construct conflict lists of new active configurations takes most time
8: return $\mathcal{C}_{\text {act }}$

Analysis of the Algorithm

Theorem. Let $S_{j}:=\left\{x_{1}, \ldots, x_{j}\right\}$. Then
(i) $\mathrm{E}\left[\left\lvert\, \mathcal{C}_{\text {act }}\left(S_{j}\right) \backslash \mathcal{C}_{\text {act }}\left(S_{j-1)} \mid\right]=O\left(\frac{\mathrm{E}\left[\text { size of } \mathcal{C}_{\text {act }}\left(S_{j}\right)\right]}{j}\right)\right.\right.$
(ii) The total size of the conflict lists of the active configurations appearing over the course of the algorithm is $O\left(\sum_{j=1}^{n} \frac{n}{j^{2}} \cdot \mathrm{E}\left[\left|\mathcal{C}_{\text {act }}\left(S_{j}\right)\right|\right]\right)$

Analysis of the Algorithm

Theorem. Let $S_{j}:=\left\{x_{1}, \ldots, x_{j}\right\}$. Then
(i) $\mathrm{E}\left[\left\lvert\, \mathcal{C}_{\text {act }}\left(S_{j}\right) \backslash \mathcal{C}_{\text {act }}\left(S_{j-1)} \mid\right]=O\left(\frac{\mathrm{E}\left[\text { size of } \mathcal{C}_{\text {act }}\left(S_{j}\right)\right]}{j}\right)\right.\right.$
(ii) The total size of the conflict lists of the active configurations appearing over the course of the algorithm is $O\left(\sum_{j=1}^{n} \frac{n}{j^{2}} \cdot \mathrm{E}\left[\left|\mathcal{C}_{\text {act }}\left(S_{j}\right)\right|\right]\right)$

Delaunay triangulation in the plane:
size of $\mathcal{C}_{\text {act }}\left(S_{j}\right)=\#($ triangles of Delaunay triangulation of j points $)=O(j)$
$\Longrightarrow \quad$ total size of all conflict lists $=O(n \log n)$

Analysis of the Algorithm

Theorem. Let $S_{j}:=\left\{x_{1}, \ldots, x_{j}\right\}$. Then
(i) $\mathrm{E}\left[\left\lvert\, \mathcal{C}_{\text {act }}\left(S_{j}\right) \backslash \mathcal{C}_{\text {act }}\left(S_{j-1)} \mid\right]=O\left(\frac{\mathrm{E}\left[\text { size of } \mathcal{C}_{\text {act }}\left(S_{j}\right)\right]}{j}\right)\right.\right.$
(ii) The total size of the conflict lists of the active configurations appearing over the course of the algorithm is $O\left(\sum_{j=1}^{n} \frac{n}{j^{2}} \cdot \mathrm{E}\left[\left|\mathcal{C}_{\text {act }}\left(S_{j}\right)\right|\right]\right)$

Delaunay triangulation in the plane:
size of $\mathcal{C}_{\text {act }}\left(S_{j}\right)=\#($ triangles of Delaunay triangulation of j points $)=O(j)$
$\Longrightarrow \quad$ total size of all conflict lists $=O(n \log n)$

Theorem. The Delaunay triangulation of a set of n points in the plane can be computed in $O(n \log n)$ expected time, using RIC.

Voronoi Diagrams and Delaunay Triangulations
Fun Facts and Application

Voronoi Diagrams and Delaunay Triangulations: Fun Facts

dilation ($=$ stretch factor $=$ spanning ratio) of Delaunay triangulation is at most 1.998 .

Voronoi Diagrams and Delaunay Triangulations: Fun Facts

dilation ($=$ stretch factor $=$ spanning ratio) of Delaunay triangulation is at most 1.998 .

Voronoi Diagrams and Delaunay Triangulations: Fun Facts

Voronoi diagram in $\mathbb{R}^{d} \equiv$ half-space intersection in $\mathbb{R}^{d+1} \approx$ convex hull in \mathbb{R}^{d+1}

Voronoi Diagrams and Delaunay Triangulations: Fun Facts

Voronoi diagram in $\mathbb{R}^{d} \equiv$ half-space intersection in $\mathbb{R}^{d+1} \approx$ convex hull in \mathbb{R}^{d+1}

Voronoi Diagrams and Delaunay Triangulations: Fun Facts

Voronoi diagram in $\mathbb{R}^{d} \equiv$ half-space intersection in $\mathbb{R}^{d+1} \approx$ convex hull in \mathbb{R}^{d+1}

Voronoi Diagrams and Delaunay Triangulations: Fun Facts

Voronoi diagram in $\mathbb{R}^{d} \equiv$ half-space intersection in $\mathbb{R}^{d+1} \approx$ convex hull in \mathbb{R}^{d+1}
map line $y=a x+b$ to point $(a,-b)$

upper envelope \equiv lower hulll

Delaunay Triangulations: Application to CF-Coloring

for $q \in \mathbb{R}^{2}$ define $D(q):=\{$ disks containing $q\}$
Conflict-free coloring: coloring of disks such that, for any q with $S(q) \neq \emptyset$, the set $D(q)$ has a disk with a unique color

Delaunay Triangulations: Application to CF-Coloring

for $q \in \mathbb{R}^{2}$ define $D(q):=\{$ disks containing $q\}$
Conflict-free coloring: coloring of disks such that, for any q with $S(q) \neq \emptyset$, the set $D(q)$ has a disk with a unique color

Delaunay Triangulations: Application to CF-Coloring

for $q \in \mathbb{R}^{2}$ define $D(q):=\{$ disks containing $q\}$
Conflict-free coloring: coloring of disks such that, for any q with $S(q) \neq \emptyset$, the set $D(q)$ has a disk with a unique color

Delaunay Triangulations: Application to CF-Coloring

Theorem. For any set of n unit disks, there exists a conflict-free coloring with $O(\log n)$ colors, and this is best possible.

Delaunay Triangulations: Application to CF-Coloring

Invert problem: color disk centers with respect to unit disks as ranges

Delaunay Triangulations: Application to CF-Coloring

Invert problem: color disk centers with respect to unit disks as ranges

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm
Initally $P=\{$ all points $\}$ and $i=1$

1. $I:=$ max independent set in Delaunay triangulation
2. Give all points in I color i
3. Set $i:=i+1$ and recurse on $P \backslash I$

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm
Initally $P=\{$ all points $\}$ and $i=1$

1. $I:=\mathrm{max}$ independent set in Delaunay triangulation
2. Give all points in I color i
3. Set $i:=i+1$ and recurse on $P \backslash I$

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm
Initally $P=\{$ all points $\}$ and $i=1$

1. $I:=\mathrm{max}$ independent set in Delaunay triangulation
2. Give all points in I color i
3. Set $i:=i+1$ and recurse on $P \backslash I$

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm
Initally $P=\{$ all points $\}$ and $i=1$

1. $I:=\mathrm{max}$ independent set in Delaunay triangulation
2. Give all points in I color i
3. Set $i:=i+1$ and recurse on $P \backslash I$

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm
Initally $P=\{$ all points $\}$ and $i=1$

1. $I:=$ max independent set in Delaunay triangulation
2. Give all points in I color i
3. Set $i:=i+1$ and recurse on $P \backslash I$

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm
Initally $P=\{$ all points $\}$ and $i=1$

1. $I:=$ max independent set in Delaunay triangulation
2. Give all points in I color i
3. Set $i:=i+1$ and recurse on $P \backslash I$

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm
Initally $P=\{$ all points $\}$ and $i=1$

1. $I:=\mathrm{max}$ independent set in Delaunay triangulation
2. Give all points in I color i
3. Set $i:=i+1$ and recurse on $P \backslash I$

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm
Initally $P=\{$ all points $\}$ and $i=1$

1. $I:=\mathrm{max}$ independent set in Delaunay triangulation
2. Give all points in I color i
3. Set $i:=i+1$ and recurse on $P \backslash I$

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm
Initally $P=\{$ all points $\}$ and $i=1$

1. $I:=$ max independent set in Delaunay triangulation
2. Give all points in I color i
3. Set $i:=i+1$ and recurse on $P \backslash I$

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm
Initally $P=\{$ all points $\}$ and $i=1$

1. $I:=$ max independent set in Delaunay triangulation
2. Give all points in I color i
3. Set $i:=i+1$ and recurse on $P \backslash I$

Delaunay Triangulations: Application to CF-Coloring

> and so on ...

The coloring algorithm
Initally $P=\{$ all points $\}$ and $i=1$

1. $I:=\mathrm{max}$ independent set in Delaunay triangulation
2. Give all points in I color i
3. Set $i:=i+1$ and recurse on $P \backslash I$

Delaunay Triangulations: Application to CF-Coloring

Claim. Number of colors $=O(\log n)$.

Delaunay Triangulations: Application to CF-Coloring

Claim. Number of colors $=O(\log n)$.

- Four Color Theorem \Longrightarrow size max indep set $\geqslant \frac{1}{4} n$

Delaunay Triangulations: Application to CF-Coloring

Claim. Number of colors $=O(\log n)$.

- Four Color Theorem \Longrightarrow size max indep set $\geqslant \frac{1}{4} n$
- $C(n):=$ number of colors

$$
C(n) \leqslant 1+C\left(\frac{3}{4} n\right) \quad \Longrightarrow \quad C(n)=O(\log n)
$$

Delaunay Triangulations: Application to CF-Coloring

Claim. Coloring is conflict-free.
any non-empty disk must have point with unique color

Delaunay Triangulations: Application to CF-Coloring

-

-

Claim. Coloring is conflict-free.
any non-empty disk must have point with unique color

- disk has single point with color 1

Delaunay Triangulations: Application to CF-Coloring

Claim. Coloring is conflict-free.
any non-empty disk must have point with unique color

- disk has single point with color 1
- disk has no point with color 1: induction

Delaunay Triangulations: Application to CF-Coloring

Claim. Coloring is conflict-free.
any non-empty disk must have point with unique color

- disk has single point with color 1
- disk has no point with color 1
- disk has $\geqslant 2$ points with color 1 disk must contain other points \Longrightarrow induction

Delaunay Triangulations: Application to CF-Coloring

Claim. Coloring is conflict-free.
any non-empty disk must have point with unique color

- disk has single point with color 1
- disk has no point with color 1
- disk has $\geqslant 2$ points with color 1 disk must contain other points \Longrightarrow induction

Course Overview

Course Overview

A COMBINATORIAL PROBLEM CONNECTED WITH DIFFERENTIAL EQUATIONS.

By H. Davenfort and A. Schinzel.
(1)

$$
F(D) f(x)=0
$$

be a (homogeneous) linear differential equation with constant coefficients, of order d. Suppose that $F(D)$ has real coefficients, and that the roots of $F(\lambda)=0$ are all real though not necessarily distinct. As is well known, any solution of (1) is of the form
(2)

$$
f(x)=P_{1}(x) e^{\lambda_{1} x}+\cdots+P_{k}(x) e^{\lambda_{k} x}
$$

where $\lambda_{1}, \cdots, \lambda_{k}$ are the distinct roots of $F(\lambda)=0$ and $P_{1}(x), \cdots, P_{k}(x)$ are polynomials of degrees at most $m_{1}-1, \cdots, m_{k}-1$, where m_{1}, \cdots, m_{k} are the multiplicities of the roots, so that $m_{1}+\cdots+m_{k}=d$. Let
(3)
$f_{1}(x), \cdots, f_{n}(x)$
be n distinct (but not necessarily independent) solutions of (1). For each real number x, apart from a finite number of exceptions, there will be just one of the functions (3) which is greater than all the others. We can therefore dissect the real line into N intervals

$$
\left(-\infty, x_{1}\right),\left(x_{1}, x_{2}\right), \cdots,\left(x_{N-1}, \infty\right)
$$

such that inside any one of the intervals $\left(x_{j-1}, x_{j}\right)$ a particular one of the functions (3) is the greatest, and such that this function is not the same for two consecutive intervals. It is almost obvious that N is finite, and a formal proof will be given below.

The problem of finding how large N can be, for given d and given n, was proposed to one of us (in a slightly different form) by K. Malanowski. This problem can be made to depend on a purely combinatorial problem, by the following considerations. With each $j=1,2, \cdots, N$ there is associated the integer $i=i(j)$ for which $f_{i}(x)$ is the greatest of the functions (3) in the interval $\left(x_{j-1}, x_{j}\right)$. (We write $x_{0}=-\infty$ and $x_{N}=\infty$ for convenience.) This defines a sequence of N terms
(4)
$i(1), i(2), \cdots, i(N)$,
Received August 26, 1964.

684
American Journal of Mathematics 87:684-694 (1965)

Harold Davenport (1907-1965)

Andrzej Schinzel (1937-2021)

A combinatorial problem

Consider a sequence over the alphabet $\{1, \ldots, n\}$ such that

- ... i i ... does not appear
- ... $\underbrace{i \ldots j \ldots i \ldots j \ldots}$. does not appear

$$
s+2 \text { times }
$$

How long can such a sequence be?

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence that does not contain the following:

- ... i i ... no two consecutive symbols are the same
- ... $\underbrace{i \ldots j \ldots i \ldots j} \ldots$ no alternating subsequence of length $s+2$ $s+2$ times

Example $(n=9, s=2)$

- 6, 4, 5, 6, 1, 2, 2, 7, 3
- $2,5,1,2,7,8,7,1,3,4$
- 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence that does not contain the following:

- ... i i ... no two consecutive symbols are the same
- ... $\underbrace{i \ldots j \ldots i \ldots j} \ldots$ no alternating subsequence of length $s+2$ $s+2$ times

Example $(n=9, s=2)$

- $6,4,5,6,1,2,2,7,3 \times$
- $2,5,1,2,7,8,7,1,3,4$
- 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence that does not contain the following:

- ... i i ... no two consecutive symbols are the same
- ... $\underbrace{i \ldots j \ldots i \ldots j} \ldots$ no alternating subsequence of length $s+2$ $s+2$ times

Example $(n=9, s=2)$

- $6,4,5,6,1,2,2,7,3 \times$
- 2, 5, 1, 2, 7, 8, 7, 1, 3, 4
- 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence that does not contain the following:

- ... i i ... no two consecutive symbols are the same
- ... $\underbrace{i \ldots j \ldots i \ldots j}$. no alternating subsequence of length $s+2$ $s+2$ times

Example $(n=9, s=2)$

- $6,4,5,6,1,2,2,7,3 \times$
- 2, 5, 1, 2, 7, 8, 7, 1, 3, 4
- $3,6,4,2,5,1,5,9,8,9,7 \mathrm{~V}$

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence that does not contain the following:

- ... iin...
no two consecutive symbols are the same
- ... $\underbrace{}_{\text {. } i \ldots j \ldots i \ldots j}$.
no alternating subsequence of length $s+2$
$s+2$ times
Example $(n=9, s=2)$
- $6,4,5,6,1,2,2,7,3 \times$
- $2,5,1,2,7,8,7,1,3,4$
- $3,6,4,2,5,1,5,9,8,9,7 \mathrm{~V}$

Exercise: Determine the maximal possible length of a DS-sequence of order s as a function of n, for $s=1, s=2, s=3, \ldots$

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence that does not contain the following:

- ... i i ... no two consecutive symbols are the same
- ... $\underbrace{i \ldots j \ldots i \ldots j} \ldots$ no alternating subsequence of length $s+2$ $s+2$ times

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence that does not contain the following:

- ... i i ... no two consecutive symbols are the same
- ... $\underbrace{i \ldots j \ldots i \ldots j} \ldots$ no alternating subsequence of length $s+2$
$s+2$ times
$\mathrm{DS}_{s}(n):=$ maximum length of DS -sequence of order s on n symbols
- $s=1$:
- $s=2$:

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence that does not contain the following:

- ... i i ... no two consecutive symbols are the same
- ... $\underbrace{i \ldots j \ldots i \ldots j} \ldots$ no alternating subsequence of length $s+2$
$s+2$ times
$\mathrm{DS}_{s}(n):=$ maximum length of DS-sequence of order s on n symbols
- $\left.s=1: \begin{array}{l}\text { possible sequence: } 1,2,3, \ldots, n \\ \text { no symbol can appear twice }\end{array}\right\} \Longrightarrow \quad \mathrm{DS}_{1}(n)=n$
- $s=2$:

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence that does not contain the following:

- ... $i i \ldots$
no two consecutive symbols are the same
- ... $\underbrace{i \ldots j \ldots i \ldots j} \ldots$ no alternating subsequence of length $s+2$ $s+2$ times
$\mathrm{DS}_{s}(n):=$ maximum length of DS-sequence of order s on n symbols
- $\left.s=1: \begin{array}{l}\text { possible sequence: } 1,2,3, \ldots, n \\ \text { no symbol can appear twice }\end{array}\right\} \Longrightarrow \quad \mathrm{DS}_{1}(n)=n$
- $s=2$: possible sequence $1,2, \ldots, n-1, n, n-1, \ldots, 2,1$
$\Longrightarrow \quad \mathrm{DS}_{2}(n) \geqslant 2 n-1$
Proof by induction, remove symbol whose first occurrence is last, plus at most one adjacent symbol:
$\mathrm{DS}_{2}(n) \leqslant \mathrm{DS}(n-1)+2 \Longrightarrow \mathrm{DS}_{2}(n) \leqslant 2 n-1$

Davenport-Schinzel sequences

Theorem. $\mathrm{DS}_{s}(n)$ is near-linear for any constant s. In particular,

- $\mathrm{DS}_{1}(n)=n$
- $\mathrm{DS}_{2}(n)=2 n-1$
- $\mathrm{DS}_{3}(n)=\Theta(n \alpha(n))$
- $\mathrm{DS}_{s}(n)=o\left(n \log ^{*} n\right)$ for any fixed constant s where $\alpha(n)$ is the inverse Ackermann function
$\alpha(n)$ grows slower than super-super-super-super-super-slowly ...
$\alpha(n)$ is inverse of Ackermann function $A(n)$, where $A(n)=A_{n}(n)$ with:

$$
\begin{array}{cll}
A_{1}(n)=2 n & \text { for } n \geqslant 1 \\
A_{k}(1)=2 & \text { for } k \geqslant 1 \\
A_{k}(n) & =A_{k-1}\left(A_{k}(n-1)\right) & \text { for } k \geqslant 2 \text { and } n \geqslant 2 \\
A(1)=2, A(2)=4, A(3)=16, A(4)=\text { tower of } 655362^{\prime} \mathrm{s}
\end{array}
$$

Course Overview

Course Overview

Robot Motion Planning

Robot Motion Planning

1. Transform problem to motion-planning problem for a point-shaped robot

Robot Motion Planning

1. Transform problem to motion-planning problem for a point-shaped robot

Robot Motion Planning

1. Transform problem to motion-planning problem for a point-shaped robot

Robot Motion Planning

1. Transform problem to motion-planning problem for a point-shaped robot by expanding each obstacle. (Expanded obstacles can intersect!)

Robot Motion Planning

1. Transform problem to motion-planning problem for a point-shaped robot by expanding each obstacle. (Expanded obstacles can intersect!)
2. Decompose free space into "quadrilaterals"

3. Transform problem to motion-planning problem for a point-shaped robot by expanding each obstacle. (Expanded obstacles can intersect!)
4. Decompose free space into "quadrilaterals"
5. Construct motion graph \mathcal{G} and compute path from s to t in \mathcal{G}

(Substructures in) Arrangements

reachable region of the robot
single cell in arrangement induced by a set S of n curves in \mathbb{R}^{2} for other types of robots: in \mathbb{R}^{d}, where $d=\#$ (degrees of freedom)

(Substructures in) Arrangements

S : set of n lines / segments / curves / etc in \mathbb{R}^{2}
$\mathcal{A}(S)=$ arrangement induced by S
$=$ partitioning of \mathbb{R}^{2} into faces, edges, and vertices induced by S

combinatorial complexity of $\mathcal{A}(S)=$ total number of vertices, edges, faces

(Substructures in) Arrangements

upper envelope

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n simple curves such that any two curves intersect at most s times, where S is a fixed constant. Then the complexity of the full arrangement $\mathcal{A}(S)$ is $O\left(n^{2}\right)$.

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n simple curves such that any two curves intersect at most s times, where S is a fixed constant. Then the complexity of the full arrangement $\mathcal{A}(S)$ is $O\left(n^{2}\right)$.

Assume curves are finite.

- number of vertices
- number of edges
- number of faces

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n simple curves such that any two curves intersect at most s times, where S is a fixed constant. Then the complexity of the full arrangement $\mathcal{A}(S)$ is $O\left(n^{2}\right)$.

Proof. Assume curves are finite.

- number of vertices

$$
|V| \leqslant 2 n+s \cdot\binom{n}{2}=O\left(n^{2}\right)
$$

- number of edges
- number of faces

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n simple curves such that any two curves intersect at most s times, where S is a fixed constant. Then the complexity of the full arrangement $\mathcal{A}(S)$ is $O\left(n^{2}\right)$.

Proof. Assume curves are finite.

- number of vertices

$$
|V| \leqslant 2 n+s \cdot\binom{n}{2}=O\left(n^{2}\right)
$$

- number of edges

$$
|E| \leqslant n \cdot(s(n-1)+1)=O\left(n^{2}\right)
$$

- number of faces

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n simple curves such that any two curves intersect at most s times, where S is a fixed constant. Then the complexity of the full arrangement $\mathcal{A}(S)$ is $O\left(n^{2}\right)$.

Proof. Assume curves are finite.

- number of vertices

$$
|V| \leqslant 2 n+s \cdot\binom{n}{2}=O\left(n^{2}\right)
$$

- number of edges

$$
|E| \leqslant n \cdot(s(n-1)+1)=O\left(n^{2}\right)
$$

- number of faces

Euler's formula:

$$
|V|-|E|+|F|=2
$$

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any two curves intersect at most s times. Then the maximum complexity of the upper envelope of S is $O\left(\mathrm{DS}_{s}(n)\right)$.

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any two curves intersect at most s times. Then the maximum complexity of the upper envelope of S is $O\left(\mathrm{DS}_{s}(n)\right)$.

Proof.

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any two curves intersect at most s times. Then the maximum complexity of the upper envelope of S is $O\left(\mathrm{DS}_{s}(n)\right)$.

Proof.

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any two curves intersect at most s times. Then the maximum complexity of the upper envelope of S is $O\left(\mathrm{DS}_{s}(n)\right)$.

Proof.

alternating sequence of length t implies $t-1$ intersections

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any two curves intersect at most s times. Then the maximum complexity of the upper envelope of S is $O\left(\mathrm{DS}_{s}(n)\right)$.

Proof.

we cannot have alternating sequence of length $s+2$
$\Longrightarrow \mathrm{DS}(n, s)$-sequence
alternating sequence of length t implies $t-1$ intersections

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of $n x$-monotone curves such that any two curves intersect at most s times. Then the maximum complexity of the upper envelope of S is $O\left(\mathrm{DS}_{s+2}(n)\right)$.

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of $n x$-monotone curves such that any two curves intersect at most s times. Then the maximum complexity of the upper envelope of S is $O\left(\mathrm{DS}_{s+2}(n)\right)$.

Proof.

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of $n x$-monotone curves such that any two curves intersect at most s times. Then the maximum complexity of the upper envelope of S is $O\left(\mathrm{DS}_{s+2}(n)\right)$.

Proof.

alternating sequence of length t implies $t-3$ intersections

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of $n x$-monotone curves such that any two curves intersect at most s times. Then the maximum complexity of the upper envelope of S is $O\left(\mathrm{DS}_{s+2}(n)\right)$.

Proof.

alternating sequence of length t implies $t-3$ intersections
we cannot have alternating sequence of length $s+4$
$\Longrightarrow \mathrm{DS}(n, s+2)$-sequence

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n curves in the plane such that any two curves intersect at most s times. Then the maximum complexity of a single cell of $\mathcal{A}(S)$ is $O\left(\mathrm{DS}_{s+2}(n)\right)$.

Course Overview

Course Overview

Computing a single cell with RIC?

Input: Set S of n segments in the plane, and a point p
Goal: Compute the face of $\mathcal{A}(S)$ containing p

The RIC framework

- $S=$ set of n input objects
- $\mathcal{C}(S)=$ set of configurations defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size bounded by fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=$ $\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing a single cell with RIC?

Input: Set S of n segments in the plane, and a point p
Goal: Compute the face of $\mathcal{A}(S)$ containing p

The RIC framework

- $S=$ set of n input segments
- $\mathcal{C}(S)=$ set of trapezoids defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size bounded by fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=$ $\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing a single cell with RIC?

Input: Set S of n segments in the plane, and a point p
Goal: Compute the face of $\mathcal{A}(S)$ containing p

The RIC framework

- $S=$ set of n input segments
- $\mathcal{C}(S)=$ set of trapezoids defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size bounded by fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=$ $\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Computing a single cell with RIC?

Input: Set S of n segments in the plane, and a point p
Goal: Compute the face of $\mathcal{A}(S)$ containing p

The RIC framework

- $S=$ set of n input segments
- $\mathcal{C}(S)=$ set of trapezoids defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size bounded by fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=$ $\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Input: Set S of n segments in the plane, and a point p
Goal: Compute the face of $\mathcal{A}(S)$ containing p

The RIC framework

- $S=$ set of n input segments
- $\mathcal{C}(S)=$ set of trapezoids defined by S
- $D(\Delta) \subset S=$ defining set of $\Delta \in \mathcal{C}(S)$ size bounded by fixed constant
- $K(\Delta) \subset S=$ conflict list of $\Delta \in \mathcal{C}(S)$?
- Goal: Compute $\mathcal{C}_{\text {act }}(S)=$ $\{\Delta \in \mathcal{C}(S): D(\Delta) \subseteq S$ and $K(\Delta) \cap S=\emptyset\}$

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations 1, 2, 4, 8, ... perform a clean-up step.

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

after 7 iterations

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

the 8-th iteration

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

the 8 -th iteration

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

the 8 -th iteration

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

the 8 -th iteration

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

the 8 -th iteration
clean-up phase: remove trapezoids not in the cell of p

Lazy Randomized Incremental Construction

Theorem. Let S be a set of n line segments and let p be a point. Then the single cell of $\mathcal{A}(S)$ defined by p can be computed in $O(n \alpha(n) \log n)$ expected time.

- Apply standard RIC approach to construct trapezoidal decomposition of the whole arrangement.
- After iterations $1,2,4,8, \ldots$ perform a clean-up step.

the 8 -th iteration
clean-up phase: remove trapezoids not in the cell of p
- Resulting algorithm has same performance bounds as when one could magically remove cells not in cell of p after each iteration
- Approach can also be formulated using abstract framework
- Can also be used to compute single cell in arrangement of triangles in \mathbb{R}^{3}, of zone of set of hyperplanes in \mathbb{R}^{d}, and more

Course Overview

Course Overview

- n monotone curves with at most s intersections per pair
- complexity of upper envelope is near-linear
- infinite curves $O\left(\mathrm{DS}_{s}(n)\right)$, finite curves $O\left(\mathrm{DS}_{s}(n)\right)$
- n constant-degree algebraic surfaces in \mathbb{R}^{d}
- complexity of upper envelope is $O\left(n^{d-1+\varepsilon}\right)$, for any fixed $\varepsilon>0$

Upper Envelopes: Applications for Moving Ponits

P : set of n points in \mathbb{R}^{2} that move linearly

- How often can the closest pair change, in the worst case?
- How often can the convex hull change, in the worst case?
- How often can the Delaunay triangulation change, in the worst case?

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Lower bound

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Lower bound
$\Omega\left(n^{2}\right)$ changes

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Upper bound

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Upper bound

- for each pair p, q define $f_{p q}(t):=$ distance between p and q at time t
- number of changes $=$ complexity of lower envelope of n^{2} functions

$$
\approx O\left(n^{2}\right)
$$

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Lower bound

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Lower bound

$$
\Omega\left(n^{2}\right) \text { changes }
$$

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Trivial upper bound

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Trivial upper bound convex hull changes \Longrightarrow three points become collinear
\Longrightarrow happens $O(1)$ times for each triple
$\Longrightarrow O\left(n^{3}\right)$ changes to convex hull

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

- for each point p define function $f_{p}:[0,2 \pi) \times \mathbb{R} \geqslant 0 \rightarrow \mathbb{R}$

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

- for each point p define function $f_{p}:[0,2 \pi) \times \mathbb{R} \geqslant 0 \rightarrow \mathbb{R}$
- p is on convex hull at time t iff $f_{p}(\theta, t) \geqslant f_{q}(\theta, t)$ for all q at time t

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

- for each point p define function $f_{p}:[0,2 \pi) \times \mathbb{R} \geqslant 0 \rightarrow \mathbb{R}$
- p is on convex hull at time t iff $f_{p}(\theta, t) \geqslant f_{q}(\theta, t)$ for all q at time t
- number of changes
$=O\left(\right.$ complexity of upper envelope of surfaces in $\left.\mathbb{R}^{3}\right)=O\left(n^{2+\varepsilon}\right)$

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

DT changes when convex hull changes $\Longrightarrow \Omega\left(n^{2}\right)$ changes

Exercises

1. Give a trivial upper bound on the number of changes.
2. Give an improved upper bound using upper envelopes.

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular $\Longrightarrow O\left(n^{4}\right)$ changes

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular $\Longrightarrow O\left(n^{4}\right)$ changes
2. When convex hull changes, DT changes $\Longrightarrow \Omega\left(n^{2}\right)$ changes

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular $\Longrightarrow O\left(n^{4}\right)$ changes
2. for each pair p, q, and each r, define function $f_{p q}^{(r)}(t): \mathbb{R} \geqslant 0 \rightarrow \mathbb{R}$

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular $\Longrightarrow O\left(n^{4}\right)$ changes
2. for each pair p, q, and each r, define function $f_{p q}^{(r)}(t): \mathbb{R} \geqslant 0 \rightarrow \mathbb{R}$
p, q, r form triangle in DT: $f_{p q}^{(r)}(t)<f_{p q}^{\left(r^{\prime}\right)}(t)$ for all r^{\prime}

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular $\Longrightarrow O\left(n^{4}\right)$ changes
2. for each pair p, q, and each r, define function $f_{p q}^{(r)}(t): \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}$
p, q, r form triangle in DT: $f_{p q}^{(r)}(t)<f_{p q}^{\left(r^{\prime}\right)}(t)$ for all r^{\prime}
number of changes $=n^{2} \times$ complexity of lower envelope in $\mathbb{R}^{2} \approx O\left(n^{3}\right)$

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

[Rubin '15; 85 pages] for linear motions the DT changes $O\left(n^{2+\varepsilon}\right)$ times

1. When DT changes, four points become co-circular $\Longrightarrow O\left(n^{4}\right)$ changes
2. for each pair p, q, and each r, define function $f_{p q}^{(r)}(t): \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}$
p, q, r form triangle in DT: $f_{p q}^{(r)}(t)<f_{p q}^{\left(r^{\prime}\right)}(t)$ for all r^{\prime}
number of changes $=n^{2} \times$ complexity of lower envelope in $\mathbb{R}^{2} \approx O\left(n^{3}\right)$

Course Overview

Course Overview

Levels in arrangements

What is the max complexity of the k-level in an arrangement of n lines?

- 0-level $=$ lower envelope $\quad \Longrightarrow \quad$ complexity $\leqslant n$
- $k \geqslant 1$: complexity is $n 2^{\Omega(\sqrt{\log k})}$ and $O\left(n k^{1 / 3}\right)$

The Clarkson-Shor Technique: Application to $(\leqslant k)$-levels

What is the max complexity of the $(\leqslant k)$-level in an arrangement of n lines?

The Clarkson-Shor Technique: Application to $(\leqslant k)$-levels

What is the max complexity of the $(\leqslant k)$-level in an arrangement of n lines?

Clarkson-Shor '89: $\Theta(n k)$

The Clarkson-Shor Technique: Application to $(\leqslant k)$-levels

Theorem. The max complexity of the $(\leqslant k)$-level in an arrangement induced by a set L of n lines in the plane is $O(n k)$.

The Clarkson-Shor Technique: Application to $(\leqslant k)$-levels

Theorem. The max complexity of the $(\leqslant k)$-level in an arrangement induced by a set L of n lines in the plane is $O(n k)$.

Proof.

The Clarkson-Shor Technique: Application to $(\leqslant k)$-levels

Theorem. The max complexity of the $(\leqslant k)$-level in an arrangement induced by a set L of n lines in the plane is $O(n k)$.

Proof.
Take sample $R \subset L$ by picking each line $\ell \in L$ with probability $1 / k$.

The Clarkson-Shor Technique: Application to $(\leqslant k)$-levels

Theorem. The max complexity of the $(\leqslant k)$-level in an arrangement induced by a set L of n lines in the plane is $O(n k)$.

Proof.
Take sample $R \subset L$ by picking each line $\ell \in L$ with probability $1 / k$.

$$
\mathbb{E}[\text { complexity of 0-level of } R] \leqslant \mathbb{E}[|R|]=n / k
$$

The Clarkson-Shor Technique: Application to $(\leqslant k)$-levels

Theorem. The max complexity of the $(\leqslant k)$-level in an arrangement induced by a set L of n lines in the plane is $O(n k)$.

Proof.
Take sample $R \subset L$ by picking each line $\ell \in L$ with probability $1 / k$.

$$
\mathbb{E}[\text { complexity of 0-level of } R] \leqslant \mathbb{E}[|R|]=n / k
$$

vertex of k-level of L shows up on 0-level of R iff

- both lines defining v are in R
- none of the at most k lines below v are in R

The Clarkson-Shor Technique: Application to $(\leqslant k)$-levels

Theorem. The max complexity of the $(\leqslant k)$-level in an arrangement induced by a set L of n lines in the plane is $O(n k)$.

Proof.
Take sample $R \subset L$ by picking each line $\ell \in L$ with probability $1 / k$.

$$
\mathbb{E}[\text { complexity of 0-level of } R] \leqslant \mathbb{E}[|R|]=n / k
$$

vertex of k-level of L shows up on 0-level of R iff

- both lines defining v are in R
- none of the at most k lines below v are in R

$$
\text { prob } \geqslant\left(\frac{1}{k}\right)^{2} \cdot\left(1-\frac{1}{k}\right)^{k} \geqslant\left(\frac{1}{k}\right)^{2} \cdot \frac{1}{e}
$$

The Clarkson-Shor Technique: Application to $(\leqslant k)$-levels

Theorem. The max complexity of the $(\leqslant k)$-level in an arrangement induced by a set L of n lines in the plane is $O(n k)$.

Proof.
Take sample $R \subset L$ by picking each line $\ell \in L$ with probability $1 / k$.

$$
\mathbb{E}[\text { complexity of 0-level of } R] \leqslant \mathbb{E}[|R|]=n / k
$$

vertex of k-level of L shows up on 0-level of R iff

- both lines defining v are in R
- none of the at most k lines below v are in R

$$
\text { prob } \geqslant\left(\frac{1}{k}\right)^{2} \cdot\left(1-\frac{1}{k}\right)^{k} \geqslant\left(\frac{1}{k}\right)^{2} \cdot \frac{1}{e}
$$

$\mathbb{E}[$ complexity of 0-level of $R] \geqslant($ complexity of k-level in $L) \cdot\left(\frac{1}{k}\right)^{2} \cdot \frac{1}{e}$

Another application: Depth in Disk Arrangements

Exercises

1. Prove that the total number of vertices on the union boundary is $O(n)$. Hint: Define a suitable planar graph whose nodes are disk centers.
2. Prove that the total number of regions of depth at most k is $O(n k)$.

Course Overview

Thanks for your attention!

TU/e

NET WORKS

